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Recall from
Classical Modéel Theory
Definition:

A first-order theory T is A-categorica if T hasonly
one model of power A (up to iIsomorphism).

Assume now: Thefirst-order language L is countable.

Morley’s Theorem (1965).

If afirst-order theory T iscategorical in some
uncountable power, then T iscategorical in all
uncountable powers. (Such atheory is called
uncountably categorical.)

Baldwin-Lachlan Theorem (1971):
The countable models of an uncountably categorical,
not totally categorical theory form an elementary

chain M, <M <---<M,
(where i is the prime model and #l, isthe
countably saturated model).



Recall from
Computable Model Theory

Assume from now on:

Thefirst-order language L is computable
(recursive), i.e., L iscountable; if L contains
Infinitely many relation or function symbolsthen in
addition the arity of each relation and function
symbol is computable (uniformly in the index of the
relation or function symbol).

Definitions:

1. A countable model M is computable (recursive,
constructivizable) if it isisomorphic to amodel M’
(with universe &) such that the open diagram of M’
(the set of all quantifier-free M’ -formulas) is
computable. (M’ iscalled a presentation of #M.)

2. A countable model M1 isdecidable (strongly
constructivizable) if the elementary diagram of M’
(the set of all M’ -formulas) is computable.

3. Relativizing to any set X, we can define the
notions of X -computable and X -decidable.




Two Questions (Lempp, mid-1990's):

® Do the above results on spectra of computable
models necessarily require an infinite language?

® |f some model of an uncountably categorical first-
order theory is computable, what can we say about
Its other countable models?
Must the other countable models be
o arithmetical?
e (0"-computable?
e (O'-computable?

A Related Question (Nies, Shore):

® How complicated can the spectrum of computable
models be?

(Nies observed that atrivial upper bound is Zz+3.)



Theorem (Herwig, Lempp, Ziegler, 1999):

Thereis an uncountably categorical theory in one
binary relation such that SCM (T) ={0}, i.e., only
the prime model is computable.

Remarks:

1. Any uncountably categorical theory in only
finitely many unary relationsis totally categorical, so
the above result is best possible.

2. We can make (the open diagrams of) the nonprime

models of any given Aoz-degree.

Proof:

The model "codes' the "Cayley graph” of afinitely
generated group with unsolvable word problem such
that the word problem can be computed only from
the nonprime models.

We show how to establish the result using three
binary relations. (One can easily code three binary
relations by one single binary relation.)

Our proof uses a group-theoretic lemma:



Group-theoretic Lemma:
Let F bethe free group of rank 3, generated by
a,b,t, say. Then thereisasequence{N,} . of

subgroups of F such that:
1. {N,} -, isauniformly computable sequence of

normal subgroups of F of finite index; thus each
F / N, isfinite and has solvable word problem

(uniformly in K).
2. Foreach wlUF,theset{k e : WLIN, } is
either finite or cofinite; thus the pointwise limit
N ={wUF :{k Ua} Iscofinite}
of the N, existsand is anormal subgroup of F.

3. N is noncomputable; thus F / N has unsolvable
word problem.

Remark:
We can maketheword problemof F / N of any given

A\’ -degree.



Proof of Theorem:
The Cayley graph @, of F / N, hasfinite universe

C.=F/N,

and three binary relations R,, R, R defined by

R (v,w) iff v=wIlx (for x [{a,b,t}).
We now define the prime model i1, to be the
digoint union of the (finite) Cayley graphs @, .
Since each (@, is computable (uniformly in k),
M, is also computable (asamodel in the three
binary relations R,, R,, R).
Any nonprime model M1, containsalso a many
copies of the (infinite) Cayley graph € of F / N,
sincethe"balls' B, (g) of radius r, defined asthe
sets of all those elements connected to g LIC, by a

sequence of at most I many R-edges, have asingle
fixed isomorphism type for sufficiently large K
(depending on ).

But since F / N has unsolvable word problem,

( cannot be computable, and thus no nonprime

model M, can be computable.




Proof Sketch of the Group-theoretic Lemma:
Given k > 0, we define:
1. the symmetric group

S,=(a,ga’=¢ =a’a=1
2. the wreath product
He=SwrZ,,

_ <Ss,b 0 [a” " [ ¢ ] [a" ,<d°"1>

(k< j<j <Kk)

3. the subgroup |

L, =(a,b,t) (heret = |_| (J)J ,K = halting problem)
K,

4. the kernel N, of the homomorphism of F onto L, .

Then:

1. H, isthe semidirect product of kIZ_I k53 and
-k j<

Z .1, S0 al three groups are computable
(uniformly in K); and

2. forall wlJF,w LN, for finitely or cofinitely
many K; and

3. k OAff [t,a® JON forall k.



More Classical Modéd Theory

Definition:

1. Aninfinite definable subset @(#1) of amodel M
Is strongly minimal if any definable subset of
d(M') in any elementary extension M’ of M is
finite or cofinite.

2. A model M isstrongly minimal if any definable
subset of any elementary extension M’ of M is

finite or cofinite.
(Here "definable" = "definable with parameters’.)

Remark: Strong minimality (of amodel) implies
uncountable categoricity, so is aproperty of the theory.

Baldwin-L achlan Theorem (1971, contd.):
Each uncountably categorical model contains a
strongly minimal subset over which it isthe prime
model. The dimension of the mode is (roughly) the
size of the largest algebraically independent subset.
(Recall the examples of successor function on ¢,
vector spaces, and algebraically closed fields.)




More Classical Modéel Theory (contd.)

Recall:
3. The algebraic closure of aset ALl M isthe set of

al mLJ M which arethe contained in afinite set
definable over A. (Such mL M iscalled
algebraic over A))

4. 1f mLJ M isalgebraic over A then misagebraic
over afinite subset A" L1 A.

5. A theory T ismodel complete if for any models
MON of T, wehave il < N.

6. If atheory T ismodel complete, thentheset T -

of its L1[_-consequences axiomatizes T .

Recall again: Examples of successor function on ¢,
vector spaces, and algebraically closed fields.

(Note: Successor function not model complete
without constant symbol for 0.)



Definition:

Let M be astrongly minima model.

1. Then M together with the algebraic closure
operator forms a pregeometry, i.e., acl(-) isa
finitary closure operator with the exchange property.
2. This pregeometry istrivia if for all nonempty
subsets ALI M,

acl(A) = | Jacl({a})

alJA

3. This pregeometry islocally modular if (roughly),
for any algebraicaly closed A,BL M,

dim(AQ B) +dim(An B)
dim(A) + dim(B)

Remark:

All the above-mentioned uncountably categorical
models are strongly minimal with trivial
pregeometry.
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Notation:

Givenamodel Ml and asubset X [ M, the
expansion M, of M by constantsin X isobtained
by adding constant symbolsfor each X [1 X

(interpreted in the obvious way).
We denote the corresponding expansion of the

language L by L, .

Theorem
(Goncharov, Harizanov, Laskowski, Lempp, McCoy)

For any trivial, strongly minimal theory T,
the elementary diagram Th(#i,, ) of M

Isamodel complete L,,-theory.
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Corollary:

Let /1 be computable, trivial, strongly minimal
model.
Then Th(#M) formsa Q"' -computable theory.

Thus all countable models of Th(#Ml) are
O''-decidable (and so in particular O'' -computable).

Proof:

By the Theorem, Th(#,,) axiomatizes Th(#,, ),

so the latter, and afortiori Th(41),

Isa O''-computable set.
Now by Harrington/Khisamiev (relativized to 0''),
each countable modelsof Th(Ml) is

O''-decidable (and so in particular O'' -computable).

Remark:

By an example of Goncharov and Khoussainov, the
assumption of strong minimality in the above
corollary Is necessary.
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A first computability-theoretic
proof attempt for the corollary:

Define an "infinitary" logic L™ by replacing the usual
first-order quantifiers by

e [1” ("for al but finitely many"), and

o =% ("thereexist at most finitely many™).

Proposition:
The L™ -theory (indeed the L™ -elementary diagram)

of any strongly minimal computable model is Q' -
computable.

Proof: Use induction on the number of free

variables, querying oracle O’ repeatedly, since

e [1” isequivalentto C=¥= and [ (for some k),
and

o [~ isequivalentto =X and ¥~ (for some k).

by the following lemma (and we can find the

appropriate K computably in 0").
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Nonfinite Covering Property Lemma:

For any strongly minimal model #i and any formula
@(X,Y), thereisafinite bound k such that for any

bOM, ¢(#M,b) isinfinite or hassize at most k.

Claim: B
For any L”-formula @(X,y) andany b O M,

the set {a: M @(a,b)} iscomputable, with index
uniformly computablein Q' .

Proof:

By induction on the quantifier complexity of @(X,VY):
Fix @(X,Y) = Czy(X,Y,2).

For K =1,2,..., check, using Q' , if there are

e k many distinct c O M with Ml E ¢/(a,b,c), and
e k many distinct d OM with Ml [|E = ¢ a,b,C).
One of these will eventually fail by the above lemma.
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Moreon Model Completeness (Kueker):

Definition:
An OC-formula @(y) and an existential formula
W(Xx,y) (bothin L) form alinked pair (for T) if
1. TELyA(y), and
2.TFEOydy'(8(y)06(y") O

W(xY) = Y (x.y)

Proposition:
Th(#M,,) ismodel complete iff

for each L-formula ¢(X), thereisalinked pair
(6,¢) (for Th(#M)) such that

M Oy(6(y) - Ox(@(X) « ¢(x,Y)).
(Thus model completeness of the elementary diagram
IS a property of the theory!)
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M odel-theoretic Corollary:

Every trivial, strongly minimal theory is [L][ -
axiomatizable.

Computability-theoretic Corollary:

The spectrum of computable models SCT(T) of a
trivial, strongly minimal (and not totally categorical)

theory T isa 3 o-subset of c (I {a}.

Remarks:

1. Theonly examples known thus far of spectraare
Intervals, and only one kind of these is neither an
initial nor afinal segment of e [1{ca}.

2. On the other hand, no arithmetical bound for the
complexity of SCT(T) was previously known.
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