Herrmann’s work on chains and antichains in computable partial orderings

Carl G. Jockusch, Jr.
University of Illinois at Urbana–Champaign
jockusch@math.uiuc.edu
Definition 1 • \((P, <_P)\) is a partial ordering if \(<_P\) is a transitive irreflexive relation on \(P\).

• If \((P, <_P)\) is a partial ordering, a set \(C \subseteq P\) is a chain if \(C\) is linearly ordered by \(<_P\).

• If \((P, <_P)\) is a partial ordering, a set \(C \subseteq P\) is an antichain if no two distinct elements of \(C\) are \(<_P\)-comparable.
Theorem 2 Chain-Antichain Theorem (CAC) Every infinite partially ordered set contains an infinite chain or an infinite antichain.

Proof. Immediate from Ramsey’s theorem for 2-colorings of pairs RT_2^2.

Let $[A]^k = \{D \subseteq A : |D| = k\}$.

RT_2^2: If $f : [\omega]^2 \to \{0, 1\}$, there is an infinite set $A \subseteq \omega$ which is f-homogeneous, i.e. f is constant on $[A]^2$.
Arithmetical Hierarchy

Definition 3 \(A \subseteq \omega \) is \(\Sigma^0_2 \) if there exists a computable \(R \) such that, for all \(a \),

\[
a \in A \iff (\exists b)(\forall c)R(a, b, c)
\]

Note: The following are equivalent:

- \(A \) is \(\Sigma^0_2 \)
- \(A \) is c.e. in \(K \)
- For some computable \(f \),
 \[
 A = \{ n : \lim_s f(n, s) = 1 \}.
 \]

\(A \) is \(\Pi^0_2 \) iff \(\overline{A} = \omega - A \) is \(\Sigma^0_2 \).

\(A \) is \(\Delta^0_2 \) iff \(A \) is both \(\Sigma^0_2 \) and \(\Pi^0_2 \) iff \(A \leq_T K \).
Theorem 4 Π₂⁰ - CAC: Let <ₚ be a computable partial ordering of ω. Then <ₚ has either an infinite Π₂⁰ chain or an infinite Π₂⁰ antichain. In fact, if <ₚ has no infinite Δ₂⁰ chain or antichain, it has both an infinite Π₂⁰ chain and an infinite Π₂⁰ antichain.

Proof. Use Π₂⁰ – RT₂²: If
f : [ω]² → {0, 1} is computable, there is an infinite Π₂⁰ f-homogeneous set. In fact,

Question Does every computable partial ordering of ω have an infinite Σ₂⁰ chain or antichain?

Note: Σ₂⁰ – RT₂² is false.
Theorem 5 (E. Herrmann). There is a computable partial ordering $(\omega, <_P)$ with no infinite Σ^0_2 chains or antichains.

Outline of proof:

1. Define a computable partial ordering $<_u$ of ω with special properties.

2. Let S_0, S_1, \ldots be a uniformly Σ^0_2 list of the Σ^0_2 chains and antichains of $<_u$.

3. **Main Step.** Construct an infinite computable set R with $R \cap S_e$ finite for all e.

4. The desired computable partial ordering $(\omega, <_P)$ is an effective copy of $(R, <_u)$.
Definition of $<_u$: Deferred

To list the Σ_2^0 chain or antichain S_e with a K oracle, list W_e^K until the first time, if ever, an element x appears in W_e^K so that $S'_e \cup \{x\}$ is neither a chain nor an antichain for $<_u$, where S'_e is the set of numbers already enumerated in S_e. Then let $S_e = S'_e$, and if no such x exists, let $S_e = W_e^K$.

Requirements for Main Step:

$P_e : \quad |R| \geq e$

$N_e : \quad S_e \cap R$ is finite.
Theorem 6 (E. Herrmann) Suppose that $<_P$ is a computable partial ordering of ω which has no infinite Σ^0_2 chains or antichains. Suppose also that $<_L$ is a computable linear ordering of ω which extends $<_P$. Then $<_L$ has order type $\omega + (\omega^* + \omega) \cdot \eta + \omega^*$, where η is the order-type of the rationals.
Lemma 7 (E. Hermann, J. Mileti) Let $<_P$ be a computable partial ordering with no infinite Σ^0_2 chains or antichains, and let $<_L$ be a computable linear ordering extending P. Then $<_L$ has no adjacent blocks.
Lemma 8 (J. Mileti) Suppose that $<_P$ is a computable partial ordering of ω and, for all $a \in \omega$, exactly one of the following two sets is infinite:

$$\{ b : a <_P b \} , \quad \{ b : b <_P a \} .$$

Then $<_P$ has an infinite Σ^0_2 chain or antichain.
Hirschfeldt and Shore used Herrmann’s theorem to obtain the following Corollary:

Corollary 9 (Hirschfeldt-Shore) There is a computable linear ordering of ω with no low subordering of type ω, ω^* or $\omega + \omega^*$.
Recall that CAC is the statement in second-order arithmetic that every infinite partial order has an infinite chain or an infinite antichain.

Let RT_2^2 be Ramsey’s theorem for 2-colorings of pairs.

Clearly RT_2^2 implies CAC in RCA_0, the base system for reverse mathematics.

The reverse implication is open.
Let WKL$_0$ be RCA$_0$ together with Weak König’s Lemma.

WKL$_0$ has an ω-model consisting only of low sets.

To show that a combinatorial theorem $(\forall X)(\exists Y)\varphi(X,Y)$ is not provable from WKL$_0$ it suffices to give a computable instance X for which there is no low solution Y.
Corollary 10 *CAC* is not provable in *WKL*$_0$.

Corollary 11 (*Hirschfeldt-Shore*) *It is not provable in* *WKL*$_0$ *that every infinite linear ordering has a subordering of type* ω, ω^*, *or* $\omega + \omega^*$.

For this and many related results, see [2].
REFERENCES

